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Abstract— Time series anomaly detection has ever existed 

as a fundamental analysis approach. The early time series 

anomaly detection techniques are mainly statistical and 

machine learning. For the practical processes of the deep 

neural network being constantly prospected by 

experimenters, the result of the deep neural network in 

anomaly detection tasks has been remarkably more helpful 

than conventional methods. Conventional models use 

commanded machine learning algorithms. In the proposed 

applications, organizing and annotating such a vast number 

of datasets is challenging, time-consuming, or too costly, 

and it needs specialization learning from professionals in 

the field. Hence, anomaly detection has become a 

significant challenge for investigators and practitioners. 

Anomaly detection is directed as the process of detecting 

anomaly data instances. In this analysis, we proposed an 

unsupervised and scalable framework for anomaly 

detection in time series data. The proposed technique is 

established on a variational auto-encoder. A deep, 

productive model that incorporates variational belief with 

deep learning. Also, real-time analysis has been performed 

for the time-series data. We used LSTM networks to 

process, make predictions, and classify based on time 

series data. 
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I. INTRODUCTION 

Anomaly detection is one of the top research areas for its 

worldwide nature. In daily life, we notice the abnormalities 

that highlight our concentration. When something differs from 

the remains of the allocation, it is labeled as an outlier or 

anomaly. This paper uses anomalies and outliers 

interchangeably, as stated in [1]. Anomaly detection directs to 

finding exact data points that do not work with the specific 

data set allocation. The most appropriate description of 

anomaly detection is given by Grubbs [2] for computer 

science: ‗‗A remote comment, or ‗outlier,‘ is one that deviates 

markedly from other members of the instance in which it 

happens‘‘. The word ‗anomaly‘ broadly refers to various 

issues in various domains. For instance, an anomaly in a 

network protection method could be an activity correlated to a 

hacking attempt or malicious software [3]. 

In the previous years, many techniques have been designed 

and utilized for anomaly detection in many applications, e.g., 

network or traffic intrusion detection. They can be classified 

into three classes: (1) statistical modeling [4-9], (2) 

information mining-based approaches [10–16], and (3) 

machine learning-based approaches [17–24]. Many previous 

studies indicated that they had successfully utilized the above 

approaches for anomaly classification [5,12,13]; therefore, the 

computational frameworks highlighting unconventional 

subsequence detection in time series are yet under-

construction. Currently, there is no unified definition of time-

series anomalies [25], and they are defined as unusual patterns 

that do not conform to expected behavior. The anomaly can be 

defined as a data point wildly dissimilar to other data points 

[26]. Anomalies can be categorized into three areas [27]: 

contextual, energy, and collective. Point anomalies are when 

the data of a single sample are abnormal likened to other data, 

which can happen in any data. A contextual anomaly defines 

that the data are unusual in a specific scenario but typical in 

another system, which can only occur in correlative data. In a 

time series, time is a context attribute that defines the class of 

models in the whole sequence. A combined anomaly means 

that there may be no relationship among numerous individual 

examples, but they may be abnormal as a group. Each data 

sample's contextual and behavioral features are considered and 

define a point anomaly of multivariate time series based on the 

relationship between a single instance and its historical data. 

Identification of multidimensional time series inconsistencies 

is inseparable from multivariate time-series data. 

Anomaly detection, the procedure of determining unpredicted 

objects or events from information, has evolved into a field of 

attraction for numerous researchers and practitioners and is 

currently one of the significant studies in data mining and 

quality assurance [28]. It has been analyzed in various 

application domains and has experienced significant progress. 

Classical approaches, adding linear model-based approaches 

[29], distance-based approaches [30], density-based 

approaches [31], and support vector machines [32], are always 

possible options for the algorithm. Moreover, as target 

approaches become larger and more complex, those methods 

face limitations, namely an inability to manage 

multidimensional information or address an insufficiency of 

labeled anomalies. Moreover, detecting anomalies in time-

series data is problematic because it must jointly consider the 

order and the causality between observations along the time 



International Journal of Engineering Applied Sciences and Technology, 2022 
Vol. 7, Issue 6, ISSN No. 2455-2143, Pages 296-305 

Published Online October 2022 in IJEAST (http://www.ijeast.com) 
 

297 

axis. Currently, multiple methods have been designed to 

manage these challenges. For example, Hu et al. [33] offered a 

novel computational technique utilizing a recurrence plot 

(RP), a square matrix consisting of the times at which a state 

of a dynamic system recurs. They calculate the local 

recurrence rates (LREC) by inspecting the RP with a sliding 

window and detecting anomalies by analogizing similarities 

between the statistics of the LREC curves. 

Deep learning, a subfield of machine learning algorithms 

inspired by the structure and function of the brain, has been 

getting attention in recent years. Deep-learning methods learn 

the complex dynamics in the data while making no 

assumptions about the underlying patterns. This property 

makes them the most attractive choice for time-series analysis 

these days. For example, Yan et al. [34] proposed to combine 

ensembled long short-term memory (LSTM) neural networks, 

which memorize long-term patterns in time series, with the 

stationary wavelet transform (SWT), to forecast the energy 

consumption. Their experimental outcomes showed that the 

proposed deep-learning method outperforms classical 

computational methods. 

Due to the growth of industry and the Internet of Things [35], 

multivariate time-series anomaly detection technology has 

made significant progress. We can receive faithful time-series 

data from the devices by configuring a multisensor approach.  

Moreover, processing these data from sensors is a major 

problem. First, the data gathered by different sensors may 

have other particulars, frequencies, and reliance‘s. However, 

the pre-processing of these data is very time-consuming and 

may require some domain knowledge. Jin et al. [36] presented 

a creative learning framework for multivariate air pollutant 

attention projection. This approach, which split the particulars 

and trends by decomposing the actual data into high-frequency 

and low-frequency parts to learn them in a multi-channel 

module, delivered a fantastic concept for us to collect the 

elements of multivariate time series. Moreover, there are some 

unavoidable problems with the above-said difficulties; for 

instance, it is challenging to set an exact limit for abnormal 

and normal data, or the data gathered by other detectors may 

include noise due to other aspects. Another problem is that the 

amount of standard data is much more significant than the 

amount of abnormal information. The issue of highly 

unbalanced data has become another major problem in time-

series anomaly detection [37]. Researchers have tried many 

ways to process multivariate time-series data. 

This analysis goal is to study state-of-the-art deep learning-

based anomaly detection methods for time-series data. We 

know that earlier studies [1], [2], [38]-[43] on this topic do no 

better than categorizing approaches according to their tools 

and describing their attributes. In addition to classifying the 

models according to their methodologies in this article, we 

further study how they describe interrelationships between 

variables, learn the temporal context, and identify anomalies 

in multivariate time series. Therefore, we give instructions to 

practitioners based on relative practical studies utilizing 

different standard datasets. Our studies offer practitioners 

helpful insights for determining the best-suited method(s) for 

the problem(s) they are trying to solve. 

 

II. LITERATURE REVIEW 

In  Anomaly detection, along with supervised learning [44], 

needs a dataset where every example is labeled, and generally, 

it affects the training of a classifier on the training set. Semi-

supervised algorithms like as [45] build a system to present 

the normal behavior from an input dataset; following the 

system is utilized to estimate the possibility of the testing 

dataset to be created by the system. Non-supervised systems 

like as [46] don‘t need a labelled dataset and perform under 

the guessing that the maximum of the data points are standard 

(e.g., utilizing clustering approaches [47]) and return the 

remaining ones as outliers. 

Yamanishi et al. suggested a Gaussian combination system by 

calculating every data point and determining the outlier with 

maximum scores [4]. Zhang and coworkers suggested a 

mathematical standard to differentiate between normal and 

abnormal data utilizing statistical algorithms [5]. Kosek et al. 

created a regression model-based approach for anomaly 

detection [6]. Goldsein et al. suggested histogram-based 

outlier detection (HBOS) algorithm, which considers the 

freedom of the elements, creating it much speedy than 

multivariate anomaly detection systems. The histogram is 

needed if the outcomes of outlier detection are ready for use 

immediately [7]. These systems' limitations are that anomaly 

detection depends on estimating that the data is generated in a 

relevant statistical distribution [8]. 

Resolutions to causing anomaly detection more useful are by 

utilizing data mining processes, including clustering, or 

classification. Researchers utilized K-means clustering for 

similar data points [10, 11] so that the data center found 

outside of these groups were thought as anomalies. These 

systems perform in a non-supervised method; moreover, they 

may not propose correct insights at the demanded class of 

detail in shorter datasets. Classification-based anomaly 

detection was also broadly analyzed for real-world 

applications, e.g., intrusion, traffic, or network detection [12–

15]. The objective of classification is to understand from 

labeled classes of training data for determining classes of new 

or unknown models [48]. Moreover, good performance 

demands that the training set must have well-defined labels. 

LSTMs have grabbed the concentration of researchers 

presently in anomaly detection. For example, [49] uses LSTM 

for forecasting time series and utilizes the forecast mistakes 

for anomaly detection. They supposed that the resulting 

forecast errors have a Gaussian distribution, which was 

utilized then to consider the likelihood of anomalous behavior. 

Then a point is learned based on the verification dataset to 

maximize the F-score, which was estimated based on the 

golden labels within the verification dataset. The method was 

verified on four-time series. However, [50] follows a same 
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method used to ECG time series, where the forecast errors are 

appropriate to a Gaussian distribution, and then the threshold 

is specified based on optimizing the F-score on the verification 

set, which similarly was estimated based on the provided 

golden labels. Also, [51] uses an LSTM-based encoder-

decoder for multi-sensor anomaly detection. When sufficient 

anomalous sequences are available, a threshold is learned by 

maximizing accuracy and memory. The utilize of recurrent 

neural networks is also typical for intrusion detection, such as 

in [52], with the aim of identifying and classifying attacks. 

Moreover, the methods specified above use the golden labels 

for optimizing the threshold against the prediction errors or 

building classifiers. 

Two primary constraints exist in recent approaches: 1) Most 

methods, such as statistical and probabilistic methods, are 

generally appropriate only for univariate datasets where one 

metric is observed at a time. It can expand to numerous 

metrics by producing a method for every metric. Moreover, 

this would not consider any relations between metrics. So, 

these systems can‘t smoothly be grown to multivariate 

research where relations among metrics can be utilized to 

determine possible anomalous behavior. This is bypassed as 

Deep AD and can accept as input multiple attributes since it 

can utilize a single LSTM method that can grab anomalies 

across numerous attributes, which causes it multivariate. 2) 

Existing methods normally depend on datasets that include the 

ground truth labels, where the anomalies are particularly 

specified to a data point. It is challenging to pick in real-life 

techniques as labelled data is costly and needs expert 

knowledge which eventually power be impacted by human 

errors in labelling the data. Therefore, the quantity of data to 

be observed and labelled would be unrealistic. Therefore, the 

primary method might not generalize to new types of 

anomalies unless retrained and hence needs expert knowledge 

for the full time of the deployment of the anomaly detection 

method, causing these techniques unrealistic to be deployed in 

dynamic environments. The dynamic threshold-based anomaly 

detection method bypasses this since no labels are required for 

training or detecting the thresholds [53]. 

Presently, machine learning approaches are broadly utilized 

for anomaly detection, involving fuzzy logic [17–19], 

Bayesian method [20,21], genetic algorithm [18,22], and 

neural network [23,24]. Nakano et al. offered a fuzzy logic-

based anomaly detection approach for network anomaly 

detection [17]. Hamamto and coworkers generated a mixed 

strategy for network anomaly detection by utilizing genetic 

algorithms and fuzzy logic [18]. Mascaro et al. analyzed the 

usage of Bayesian networks for studying vessel behavior and 

detecting anomalies [21]. Mixing the dynamic and static 

networks, they confirmed that their method enhanced the 

detecting precision in vessel tracks. With the quick growth of 

artificial intelligence, different neural network methods, e.g., 

recurrent neural network (RNN) [24] and back propagation 

neural network (BPNN) [23], were created to observe the 

anomalies of a difficult method. These methods perform better 

in some applications; moreover, generalization is difficult. 

Compared with standard machine learning approaches, deep 

learning (DL) has a stronger learning capability and can 

achieve more precision [54]. The systematic deep learning 

approaches are malicious productive network (GAN) [55], 

autoencoder [56], convolutional neural network (CNN) [57], 

and Long Short-Term Memory (LSTM) [58]. Earlier analyses 

display that nearly all of the above approaches were applied to 

anomaly classification [59–61]; moreover, the work 

highlighting on DL-based abnormal subsequence detection in 

time series is rarely reported. There are multiple chances to 

execute anomaly detection in time series utilizing different 

statistical or SVM-based approaches, with MFAD [9] and 

LRRDS [33]. Moreover, some endeavors perfectly forecast the 

unusual sequence in time series utilizing LSTM. However, an 

excellent deep learning process is needed to execute anomaly 

detection utilizing LSTM. 

There are multiple time-series data, but only a tiny part of the 

data has been labeled as abnormal or not. It is challenging to 

develop a clear limit between normal and abnormal data cause 

they are comparative and connected to the factors in which the 

information is located. Also, the amount of anomalous data in 

a sequence is tiny and linked with the desired data. Moreover, 

multiple researchers have proposed unsupervised techniques 

for anomaly detection. One of these famous approaches is 

clustering approaches, e.g., One-Class Support Vector 

Machine (OCSVM). Ma and Perkins [63] utilized OCSVM to 

method the training information and determine whether the 

trial data was abnormal or normal. The mentioned method 

solves the issue perfectly in many applications. It does not 

function better on time-series information. The technique only 

pays attention to the data's knowledge but has nothing to do 

with capturing the correlation of temporal data. Other system 

is machine learning approaches, e.g., Isolation Forest 

(iForest). 

Liu et al. [64] offered an approach based on iForest to notice 

anomalies in sequence data. This method establishes a binary 

tree by random selection of attributes and cannot receive the 

connection between different elements, which leads to an 

inconsistent detection impact. Few researchers considered 

utilizing predictive approaches to capture temporal data. These 

predictive methods can forecast what data will occur at the 

next phase before new data reach.  The few usual ideals are 

the Autoregressive approaches (AR) [65], Moving Average 

(MA) [66], Autoregressive Moving Average (ARMA) [67], 

and its variants. These methods perform well in time-series 

anomaly detection, but they are smoothly impacted by noise. 

So, there are showing multiple false negative and false 

positive outcomes when data have serious noise. Nowadays, 

anomaly detection techniques based on deep learning have 

made significant improvements. One of the typical deep 

learning models for processing time series is Long Short-Term 

Memory (LSTM). An LSTM-based method can forecast the 

data at the next time step and estimate the distance between 
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forecasted data and actual time-series data to determine 

whether it is abnormal. Ergen and Kozat [68] suggested an 

approach based on the LSTM structure to detect product 

quality. Lindemann et al. [69] utilized the LSTM system to 

receive the elements of these fixed-length sequences and 

confirmed an anomaly detection method based on OCSVM. 

Li et al. [70] integrated the features of SAE and LSTM and 

suggested an anomaly detection approach based on 

unsupervised deep learning. The LSTM design that can learn 

the nonlinear relationship of short-term or long-term time-

series data is also sensitive to noise, which may expand the 

risk of misclassification in anomaly detection. Liang et al. [71] 

estimated the feature matrices and included a forgetting 

mechanism in the system to reduce the influence of noise. 

Zhang et al. [72] suggested a system integrating wavelet 

denoising and primary element analysis to process data noise. 

The autoencoder approach is another famous noise-friendly 

approach for detecting sequence data anomalies. It considers 

whether abnormal by considering the difference between 

encoded and actual data. Vincent et al. [73] developed a self-

encoding noise decrease system that can recover the input data 

with noise to the data without noise. Borghesi et al. [74] 

utilized a semi-supervised anomaly detection approach based 

on an autoencoder. The autoencoder utilizes the concept of 

encoding and decoding to reduce the noise in time series, 

making the system more robust. The autoencoder is 

theoretically better at managing one-dimensional time series 

[71] because this configuration can't get the relation between 

multidimensional time-series data. AnoGAN [75] is the initial 

framework introduced in unsupervised anomaly detection and 

effectively finds diseased photos from sets of unknown 

images. Plakias [76] presented GANs based one-class fault 

detection system for the multi-dimensional issue, and 

investigations demonstrated the suggested approach 

outperforms One-class SVM and Isolation Forest. As said, 

GANs-based architecture has slowly evolved in anomaly 

detection fields. GAN architecture's main disadvantage is the 

training fluctuation [62]. If all the above approaches on 

various techniques impact time-series anomaly detection, they 

all require indicators to assess anomalies in standard. 

 

III. PROPOSED GOAL 

The aim of this project is to detect anomaly in time series data 

using Deep Learning. 

 

IV. PROBLEM STATEMENT 

Anomaly Detection is the identification of the data of a 

variable or events that do not follow a specific pattern. 

Anomaly detection helps to identify the data's unexpected 

behavior with time so businesses and companies can make 

strategies to overcome the situation. It also helps the firms 

identify the mistake and scams that will occur at a particular 

time, or it assists in learning from ex records of data 

demonstrating typical behavior. We develop LSTM 

Autoencoder to teach time-series data. 

 

V. DATASET USED 

Daily price data for the S&P 500 index has been surprisingly 

tricky over the years. Most public data only go back to the 

2000s. If it is long-term, it is weekly instead of daily. This 

dataset contains daily closing prices for SPY from 1986 to 

2018. The folder contains the CSV file. 

 

The measures follow to detect anomalies in Johnson & Johnson 

stock price data utilizing an LSTM autoencoder: 

 Teach an LSTM autoencoder on Johnson & Johnson‘s 

stock value data from 1985–09–04 to 2013–09–03. We 

suppose that there were no anomalies and that they were 

predicted. 

 Utilizing the LSTM autoencoder to rebuild the mistake on 

the examination data from 2013–09–04 to 2020–09–03. 

 If the rebuild mistake for the examined data is above the 

point, we mark the data point as an anomaly. 

 

VI. REQUIREMENTS 

The main requirements are listed below: 

A. Python 3.6.10 

Python 3 is a newer version of the Python programming 

language which was released in December 2008. This version 

was mainly released to fix problems that exist in Python 2. The 

nature of these changes is such that Python 3 was incompatible 

with Python 2. It is backward incompatible. If you see 3.6 or 

earlier, by the end of December 2021, you'll no longer receive 

updates or bug fixes. To resolve that, you must upgrade to the 

latest version of Python. Because 3.6 will have reached End of 

Life (EOL), it will no longer receive bug fixes, even if they are 

critical. 

 

B. Keres 

Keres is a high-level, deep learning API developed by Google 

for implementing neural networks. It is written in Python and is 

used to make the implementation of neural networks easy. It 

also supports multiple backend neural network computation. 

Keres is relatively easy to learn and work with because it 

provides a python frontend with a high level of abstraction 

while having the option of multiple back-ends for computation 

purposes. This makes Keres slower than other deep learning 

frameworks, but extremely beginner-friendly. 

 

C. Tensorflow 

TensorFlow is an open-source framework developed by 

Google researchers to run machine learning, deep learning and 

other statistical and predictive analytics workloads. 

TensorFlow provides a collection of workflows to develop and 

train models using Python or JavaScript, and to easily deploy 

in the cloud, on-prem, in the browser, or on-device no matter 
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what language you use. The tf. data API enables you to build 

complex input pipelines from simple, reusable pieces. 

D. Numpy 

NumPy, meaning Numerical Python, is a library containing 

multi-dimensional array entities and a group of exercises for 

processing those arrays. Utilizing NumPy, mathematical and 

logical functions on shows can be executed. It also has 

procedures for working in the domain of linear algebra, Fourier 

transform, and matrices. NumPy was developed in 2005 by 

Travis Oliphant. It is an open-source object, and you can utilize 

it freely. 

 

E. Pillow 6.1 

Pillow 6.1 is a Python Imaging Library. It is a free and open-

source library for the Python programming language that 

includes support services for saving many different image file 

formats, opening, and manipulating. It is open for Linux, 

Windows, and Mac OS X. The most recent version of PIL is 

1.1. 

 

F. Scikit-learn 

Scikit-learn is an integral part of the Python machine learning 

toolkit at JPMorgan. It is broadly utilized across all aspects of 

the bank for Classification, estimate analytics, and many other 

machine learning jobs. Scikit-learn is an open-source data 

analysis library and the gold standard for Machine Learning 

(ML) in the Python ecosystem. The main visions and elements 

contain Algorithmic decision-making methods, including 

Classification: recognizing and classifying data based on 

designs. 

 

G. Pandas 

Pandas is a Python library used for working with data sets. It 

has functions for analyzing, cleaning, exploring, and 

manipulating data. The name "Pandas" has a reference to both 

"Panel Data", and "Python Data Analysis" and was created by 

Wes McKinney in 2008. Pandas is an open-source Python 

package that is most widely used for data science/data analysis 

and machine learning tasks. It is built on top of another 

package named Numpy, which provides support for multi-

dimensional arrays. 

 

H. Seaborn  

Seaborn is a Python data library established on matplotlib. It 

delivers a high-level interface for creating gorgeous and 

informative statistical graphics. You can study the preliminary 

notes or the article for a quick preface to the concepts behind 

the library. 

 

I. Matplotlib 

Matplotlib is the Python programming language for plotting 

libraries for the numeric mathematical extension NumPy. It 

uses general-purpose GUI toolkits such as wxPython, Tkinter, 

GTK, or Qt. A systematic "Pylab" interface is based on a state-

of-the-art machine (such as OpenGL), providing an object-

based API for embedding stories in applications, which is 

similar to MATLAB, though its usage is disheartened closely. 

SciPy creates the use of Matplotlib.  

 

J. Tqdm 

The name tqdm comes from the Arabic name takaddum, which 

means 'progress.' The Spanish acronym for "I love you so 

much" (te quiero demasiado). Applying tqdm can be done 

effortlessly on our loops, functions, or even pandas. 

VII. EXPERIMENT 

Training: 

 Data distribution: 

80% Training & validation and 20% Test. 

 Loss Function: 

Mean Absolute Error. 

 Evaluation Metrics: 

Mean Absolute Error 

 Optimizer: 

Adam Optimizer. 

VIII. MODEL 

LSTM Autoencoder 

 

LSTM Networks: 

The LSTM network is a revised version of RNNs, efficiently 

remembering the long-term allegiance in data. While this issue 

solves in LSTM networks, RNNs confront the vanishing 

gradient problem. The memory unit (or cell) is the principal of 

the LSTM network, as shown in Figure 1. A cell is made up of 

three sigmoid and a single tanh layer to organize information 

outside and inside a cell. The forget gate can reset the memory 

unit with a sigmoid function. To manage the output and input 

data flow in the memory unit, output and input gates are 

provided, respectively. 

 
Fig. 1. The Architecture of an LSTM cell. 

 

A. Autoencoder 

Fig. 1. An ANN that has two distinct parts is an 

autoencoder. The encoder h = f (x) converts the original data, 

and the decoder reconstructs the data, which formulates as xˆ 

= g (h). Creating autoencoders aims to replicate the network's 

input to its output. The system is pushed to prioritize the 
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valuable input factors; on the other hand, an autoencoder plays 

a vital role in learning the valuable features of data. Thus, the 

networks don't understand to copy correctly but 

approximately, and they are limited in such a manner that 

develops output that resembles the training information. 

 

B. Autoencoder LSTM 

In this suggested method, an autoencoder compresses and 

encodes the data. Autoencoder is an unsupervised ANN that 

creates a more miniature encoded expression of data and then 

knows how to rebuild the data. The resemblance of the rebuilt 

data to the initial input defines the efficacy of an autoencoder. 

The predicted workflow utilized in this article is shown in Fig. 

3. The LSTM level consists of autoencoders with encoders 

and decoders. After every LSTM layer, a put dropout layer to 

protect the method from overfitting in the training process. 

First, the autoencoder is taught. Next, the encoder part is 

utilized as the element generator. The last phase is to train the 

LSTM-based predictor to deliver the modified closing price 

projection for the next day. 

 
Fig. 2. The architecture of Autoencoder LSTM. 

 

We describe the rebuild LSTM Autoencoder architecture that 

predicts input lines with 30-time phases and outputs a string 

with 30-time actions and one element. Repeat Vector () 

repeats the inputs 30 times. Set return sequences=True, so the 

output will still be a sequence.  Time Distributed (Dense 

(X_train.shape [2])) is added at the end to get the output, 

where X_train.shape [2] is the number of features in the input 

data. The whole parameters are 198,273. All parameters are 

trainable, and a dropout layer is utilized to bypass the 

overfitting issue. 

 

 

 

 

 

 

 

Table -1 Experiment Result 

Model: ―sequential‖ 

Layer (type) 
Output 

shape 
Param # 

lstm (LSTM) (None, 128) 66560 

dropout (Dropout) (None, 128) 0 

repeat_vector 

(RepeatVector) 

(None, 30, 

128) 
0 

lstm_1 (LSTM) 
(None, 30, 

128) 
131584 

dropout_1 (Dropout) 
(None, 30, 

128) 
0 

time_distributed 

(TimeDistributed) 

(None, 30, 

1) 
129 

Total params: 

198,273 

Trainable params: 

198,273 

Non-trainable 

params: 0 

  

 

 

C. Training and Validation Loss 

On the entire group of data, the LSTM closed teaching at 

epoch 10. The project losses in the last epoch came at the price 

of 0.0736, while the confirmation loss came at the value of 

0.0455. The training and verification losses for each period are 

presented in Fig. 3. 

 

 
Fig. 3. Training and Validation Loss. 

 

D. Train and Test Loss Histogram 

Histogram prices of teaching data (members) and examine 

data (non-members). We see the more significant divergence 

between the loss allocation over members and non-members 

in the powerful approach equivalent to the natural system. 
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Fig. 4. Train and Test Loss Histogram. 

 

 
Fig. 5. Train and Test Loss Histogram. 

 

E. Anomaly Detected 

We will find anomalies by specifying how well the system 

rebuilds the input data. 

 Find MAE losing on teaching examples. 

 Discover most MAE loss prices. This is the most harmful 

our method has executed attempting to rebuild an 

example. We will create this threshold for anomaly 

detection. 

 If the rebuild loss, for example, is better than this 

threshold price, then we can assume that the method sees 

a pattern it isn't acquainted with. We will mark this 

example as an anomaly. 

 

 
Fig. 5. Train and Test Loss Histogram 

 

VII.CONCLUSION 

A total of 27 slender beams without transverse reinforce- ment 

and 18 slender beams with transverse reinforcement were 

tested experimentally to study the behaviour for dif- ferent 

grades i.e. M1, M2 and M3 mixes. 
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